Closing the loop: from paper to protein annotation using supervised Gene Ontology classification
نویسندگان
چکیده
UNLABELLED Gene function curation of the literature with Gene Ontology (GO) concepts is one particularly time-consuming task in genomics, and the help from bioinformatics is highly requested to keep up with the flow of publications. In 2004, the first BioCreative challenge already designed a task of automatic GO concepts assignment from a full text. At this time, results were judged far from reaching the performances required by real curation workflows. In particular, supervised approaches produced the most disappointing results because of lack of training data. Ten years later, the available curation data have massively grown. In 2013, the BioCreative IV GO task revisited the automatic GO assignment task. For this issue, we investigated the power of our supervised classifier, GOCat. GOCat computes similarities between an input text and already curated instances contained in a knowledge base to infer GO concepts. The subtask A consisted in selecting GO evidence sentences for a relevant gene in a full text. For this, we designed a state-of-the-art supervised statistical approach, using a naïve Bayes classifier and the official training set, and obtained fair results. The subtask B consisted in predicting GO concepts from the previous output. For this, we applied GOCat and reached leading results, up to 65% for hierarchical recall in the top 20 outputted concepts. Contrary to previous competitions, machine learning has this time outperformed standard dictionary-based approaches. Thanks to BioCreative IV, we were able to design a complete workflow for curation: given a gene name and a full text, this system is able to select evidence sentences for curation and to deliver highly relevant GO concepts. Contrary to previous competitions, machine learning this time outperformed dictionary-based systems. Observed performances are sufficient for being used in a real semiautomatic curation workflow. GOCat is available at http://eagl.unige.ch/GOCat/. DATABASE URL http://eagl.unige.ch/GOCat4FT/.
منابع مشابه
Protein Annotation with GO Codes
In this paper our goal is to present results from experiments with assigning Gene Ontology (GO) codes to a subset of Swiss-Prot database pertaining to human proteins using a supervised classification method. Our approach is to first classify documents referenced in the Swiss-Prot subset as relevant to proteins with codes, then annotate each protein with a subset of codes assigned to its relevan...
متن کاملClosing the Loop: Fast, Interactive Semi-Supervised Annotation With Queries on Features and Instances
This paper describes DUALIST, an active learning annotation paradigm which solicits and learns from labels on both features (e.g., words) and instances (e.g., documents). We present a novel semi-supervised training algorithm developed for this setting, which is (1) fast enough to support real-time interactive speeds, and (2) at least as accurate as preexisting methods for learning with mixed fe...
متن کاملAutomatic Assignment of Protein Function with Supervised Classifiers
Automatic Assignment of Protein Function with Supervised Classifiers. (August 2008) Jae Hee Jung, B.S., Dongduk Women’s University; M.S., Korea University Chair of Advisory Committee: Dr. Michael R. Thon High-throughput genome sequencing and sequence analysis technologies have created the need for automated annotation and analysis of large sets of genes. The Gene Ontology (GO) provides a common...
متن کاملIdentification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملA CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images
Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014